If x4+ 1/x4 =194 , find x2+ 1/x2 and x3+ 1/x3
Answers
In the above Question , the following information is given -
x⁴ + 1 / x⁴ = 194
To find -
Find the values of x² + 1 / x² and x³ + 1 / x³ respectively .
Solution -
Here ,
x⁴ + 1 / x⁴ = 194
Adding 2 on both sides -
x⁴ + 1 / x⁴ + 2 = 194 + 2
=> x⁴ + 2 ( x² )( 1 / x² ) + 1 / x⁴ = 196
=> ( x² + 1 / x² ) ² = ( 14 ) ²
=> x² + 1 / x² = 14
Now ,
x² + 1 / x² = 14
Adding 2 on both sides -
x² + 1 / x² + 2 = 14 + 2
x² + 2 ( x )( 1 / x ) + 1 / x² = 16
=> ( x + 1 / x ) ² = ( 4 ) ²
=> x + 1 / x = 4
Now , cubing both sides -
=> ( x + 1 / x ) ³ = 4 ³
=> x³ + 1 / x³ + 3 ( x + 1 / x ) = 64
=> Substituting the value of x + 1 / x -
=> x³ + 1 / x³ + 12 = 64
=> x³ + 1 / x³ = 64 - 12
=> x³ + 1 / x³ = 52 .
Answer :
The values of x² + 1 / x² and x³ + 1 / x³ are 14 and 52 respectively .
____________
Given:
- x⁴ + (1/x⁴) = 194
To find:
- x² + 1/x²
- x³ + 1/x³
Solution:
Given,
x⁴ + 1/x⁴ = 94
Adding 2 on Both sides
→ x⁴ + 2 + 1/x⁴ = 294 + 2
→ x⁴ + 2(x²)(1/x²) + 1/x⁴ = 196 [ °.° x² × 1/x² = 1 ]
It is in the form of
(x² + 1/x²)² = x⁴ + 2(x²)(1/x²) + 1/x⁴
→ (x² + 1/x²)² = 196
→ x² + 1/x² = √196
→ x² + 1/x² = 14
Adding 2 on both sides
→ x² + 2 + 1/x² = 14 + 2
→ x² + 2(x)(1/x) + 1/x² = 16 [°.° x × 1/x = 1]
→ (x + 1/x)² = 16
→ x + 1/x = √16
→ x + 1/x = 4 …… eq i
Cubing on both sides
→ (x + 1/x)³ = 4³
→ x³ + 1/x³ + 3{(x)(1/x)[x + 1/x]} = 64
→ x³ + 1/x³ + 3[x + 1/x] = 64
→ x³ + 1/x³ + 3(4) = 64. [°.° Eq i ]
→ x³ + 1/x³ = 64 - 12
→ x³ + 1/x³ = 56
Hence, x² + 1/x² = 4 & x³ + 1/x³ = 56