If x⁴ + 1/x⁴ =47 find the value of x³ + 1/x³
Don't spam !
Answers
Answer:-
Given:-
x⁴ + 1/x⁴ = 47
This can be written as:
⟹ (x²)² + (1/x²)² = 47
We know that,
a² + b² = (a + b)² - 2ab
So,
⟹ (x² + 1/x²)² - 2 * (x²) * (1/x²) = 47
⟹ (x² + 1/x²)² - 2 = 47
⟹ (x² + 1/x²)² = 47 + 2
⟹ (x² + 1/x²)² = 49
⟹ x² + 1/x² = √49
⟹ x² + 1/x² = 7
Again using a² + b² = (a + b)² - 2ab we get,
⟹ (x + 1/x)² - 2 (x)(1/x) = 7
⟹ (x + 1/x)² - 2 = 7
⟹ (x + 1/x)² = 7 + 2
⟹ (x + 1/x)² = 9
⟹ (x + 1/x) = √9
⟹ (x + 1/x) = 3 -- equation (1).
Now,
Cubing both sides we get,
⟹ (x + 1/x)³ = (3)³
using (a + b)³ = a³ + b³ + 3ab(a + b) we get,
⟹ x³ + 1/x³ + 3 (x) (1/x) (x + 1/x) = 27
Substituting x + 1/x = ± 3 [ from equation (1) ] in LHS we get,
⟹ x³ + 1/x³ + 3(3) = 27
⟹ x³ + 1/x³ + 9 = 27
⟹ x³ + 1/x³ = 27 - 9
⟹ x³ + 1/x³ = 18
∴ The value of x³ + 1/x³ is 18.
x⁴ + (1/x⁴) = 47
Adding and subtracting 2 on LHS,
x⁴ + (1/x⁴) + 2 - 2 = 47
[(x²)² + (1/x²)² + 2 × (1/x²) x²] = 47+2
( x² + 1/x² )² = 49
( x² + 1/x² )² = 7²
x² + 1/x² = 7 [neglecting the negative sign]
x² + 1/x² + 2 - 2 = 7
x² + 2.x².1/x² + 1/x² = 7+2
(x + 1/x)² = 9
(x+ 1/x)² = 3²
x + 1/x = 3 [neglecting the negative sign]
x³ + 1/x³ = (x+ 1/x)³ - 3.x.1/x(x + 1/x)
= (3)³ - 3(3)
= 27-9
= 18