Math, asked by sangithakailash2804, 1 year ago

If x4 + 1/x4 = 47, then find the value of x3 + 1/x3 op 1: 18 op 2: 27 op 3: 9 op 4: 12 op 5: correct op

Answers

Answered by gaurav2013c
11
x^4 + 1 /x^4 = 47

On adding 2 in both sides, we get

x^4 + 1/x^4 + 2 = 47 + 2

=> (x^2) ^2 + ( 1/ x^2)^2 + 2 × (x^2) (1/x^2) = 49

=> ( x^2 + 1 /x^2) ^2 = 49

=> x^2 + 1/x^2 = 7 -----------(1)

Again, on adding 2 in both sides, we get

x^2 + 1/x^2 + 2 = 7 +2

=> ( x + 1/x)^2 = 9

=> x +1/x = 3 --------(2)

Now,

x^3 + 1/x^3 = ( x + 1/x) (x^2 + 1/x^2 - x × 1/x)

= (3) ( 7 - 1)

= 3 × 6

= 18


So,

Option (1) is correct.
Answered by abhi569
14
 x^{4}  + \frac{1}{x^{4} }  = 47


Add  2(x^{2}* \frac{1}{ x^{2} }  ) i.e. 2  on both sides,

 x^{4} +   \frac{1}{ x^{4} }  + 2 = 47+2

((  x^{2} +  \frac{1}{x})^{2} =  7^{2}



 x^{2} +  \frac{1}{x^{2} } = 7


Again aad 2 on both sides,


 x^{2} + \frac{1}{ x^{2} } + 2 = 7+2

(x+ \frac{1}{x})^{2}  = 3^{2}

(x+ \frac{1}{x} ) = 3

Cube on both sides,


(x+ \frac{1}{x})^{3}   = 3^{3}

 x^{3}  +  \frac{1}{ x^{3} } + 3(x+ \frac{1}{x} ) = 27


 x^{3}  +  \frac{1}{x^{3} }  + [3*3] =27

 x^{3}  +  \frac{1}{ x^{3} }  = 27-9

 x^{3}  +  \frac{1}{x^{3} } = 18



i hope this will help you


-by ABHAY



Similar questions