Math, asked by abhidhiman180, 3 months ago

if x4+1_x4=47 then value of x+1_x is:​

Answers

Answered by nitachavhan995
0

Answer:

x

3

+

x

3

1

=18

Given:

x ^ { 4 } + \left( \frac { 1 } { x ^ { 4 } } \right) = 47x

4

+(

x

4

1

)=47

To find:

x ^ { 3 } + \frac { 1 } { x ^ { 3 } }x

3

+

x

3

1

Solution:

x ^ { 4 } + \left( \frac { 1 } { x ^ { 4 } } \right) = 47x

4

+(

x

4

1

)=47

Adding and subtracting 2 on LHS,

x ^ { 4 } + \left( \frac { 1 } { x ^ { 4 } } \right) + 2 - 2 = 47x

4

+(

x

4

1

)+2−2=47

\left[ \left( x ^ { 2 } \right) ^ { 2 } + \left( \frac { 1 } { x ^ { 2 } } \right) ^ { 2 } + 2 \times \left( \frac { 1 } { x ^ { 2 } } \right) x ^ { 2 } \right] = 47 + 2[(x

2

)

2

+(

x

2

1

)

2

+2×(

x

2

1

)x

2

]=47+2

\left( x ^ { 2 } + \frac { 1 } { x ^ { 2 } } \right) ^ { 2 } = 49(x

2

+

x

2

1

)

2

=49

\left( x ^ { 2 } + \frac { 1 } { x ^ { 2 } } \right) ^ { 2 } = 7 ^ { 2 }(x

2

+

x

2

1

)

2

=7

2

x ^ { 2 } + \frac { 1 } { x ^ { 2 } } = 7 [neglecting the negative sign]x

2

+

x

2

1

=7[neglectingthenegativesign]

x ^ { 2 } + \frac { 1 } { x ^ { 2 } } + 2 - 2 = 7x

2

+

x

2

1

+2−2=7

x ^ { 2 } + 2 \left( x ^ { 2 } \right) \frac { 1 } { x ^ { 2 } } + \frac { 1 } { x ^ { 2 } } = 7 + 2x

2

+2(x

2

)

x

2

1

+

x

2

1

=7+2

\left( x + \frac { 1 } { x } \right) ^ { 2 } = 9(x+

x

1

)

2

=9

\left( x + \frac { 1 } { x } \right) ^ { 2 } = 3 ^ { 2 }(x+

x

1

)

2

=3

2

x + \frac { 1 } { x } = 3 [neglecting the negative sign]x+

x

1

=3[neglectingthenegativesign]

x ^ { 3 } + \frac { 1 } { x ^ { 3 } } = \left( x + \frac { 1 } { x } \right) ^ { 3 } - 3 ( x ) \frac { 1 } { x } \left( x + \frac { 1 } { x } \right)x

3

+

x

3

1

=(x+

x

1

)

3

−3(x)

x

1

(x+

x

1

)

= ( 3 ) ^ { 3 } - 3 ( 3 )=(3)

3

−3(3)

= 27-9= 18

x ^ { 3 } + \frac { 1 } { x ^ { 3 } }= 18x

3

+

x

3

1

=18 "

Similar questions