Math, asked by aquamam, 4 months ago

if x4+1/x4 = 47 then x2 + 1/x2 =​

Answers

Answered by ItsAritrakz22
1

 \large\mathfrak \pink{Solution:-}

 \underline \mathbb{GIVEN:-}

 {x}^{4}  +  \frac{1}{x  {}^{4} }  = 47 \\

 \underline \mathbb{TO  \: FIND:-}

 {x}^{2}  +  \frac{1}{x  {}^{2} }   \\

  \underline \mathbb{FORMULA:-}

(a +  \frac{1}{a} ) {}^{2}  = a {}^{2}  +  \frac{1}{ {a}^{2} }  + 2 \times \cancel a \times   \cancel\frac{1}{a}  \\  \\  \implies \: a {}^{2}  +  \frac{1}{ {a}^{2} }  + 2

 \underline \mathbb{BY  \: THE  \: PROBLEM:-}

 {x}^{4}  +  \frac{1}{x  {}^{4} }  = 47 \\   \\ \implies \: ( {x}^{2} ) {}^{2} +( { \frac{1}{x {}^{2} } }) ^{2}    = 47\\   \\ \implies \: ( {x}^{2} ) {}^{2} +( { \frac{1}{x {}^{2} } }) ^{2}  + 2   = 47 + 2---(Add\:2\:both\: sides)\\   \\ \implies \:(x {}^{2}  +  \frac{ {1} }{x ^{2} })  {}^{2}  = 49\\   \\ \implies (\:x {}^{2}  +  \frac{ 1 }{ {x}^{2} }  )=  \sqrt{49} \\   \\ \implies \:(\:x {}^{2}  +  \frac{ 1 }{ {x}^{2} }  )= 7

\underline \mathbb{ANSWER:-}

\\  \implies \boxed{ \:(\:x {}^{2}  +  \frac{ 1 }{ {x}^{2} }  ) = 7}

Answered by Aritra3Kz22
0

the solution is given above.....

Similar questions