Math, asked by rachnamor90, 3 months ago

if x4+1/x4= 527,then X3+1/X3=?​

Answers

Answered by BrainlyIAS
4

Given :

\bullet\ \; \sf \red{x^4+\dfrac{1}{x^4}=527}

To Find :

\bullet\ \; \sf \orange{x^3+\dfrac{1}{x^3}}

Formula Used :

\bullet\ \; \sf \pink{(a+b^2)=a^2+b^2+2ab}

Solution :

\sf \blue{x^4+\dfrac{1}{x^4}=527}

:\implies \sf (x^2)^2+\dfrac{1}{(x^2)^2}=527

Adding ' 2 ' on both sides , we get ,

:\implies \sf (x^2)^2+\dfrac{1}{(x^2)^2}+2=527+2

:\implies \sf (x^2)^2+\dfrac{1}{(x^2)^2}+2.(x^2).\dfrac{1}{(x^2)}=529

LHS resembles the formula used ,

:\implies \sf \bigg[ (x^2)+\dfrac{1}{(x^2)} \bigg] ^2=529

:\implies \sf x^2 + \dfrac{1}{x^2} =23\ ...(1)

Again adding ' 2 ' on both sides , we get ,

:\implies \sf x^2+\dfrac{1}{x^2}+2.x.\dfrac{1}{x}=23+2

Again LHS resembles the formula used ,

:\implies \sf \bigg( x+\dfrac{1}{x} \bigg)^2=25

:\implies \sf x+\dfrac{1}{x}=5\ ...(2)

On multiplying eq. (1) and eq. (2) , we get ,

:\implies \sf \bigg(x^2+\dfrac{1}{x^2}\bigg) \bigg(x+\dfrac{1}{x}\bigg)=(23)(5)

:\implies \sf x^3+x+\dfrac{1}{x}+\dfrac{1}{x^3}=115

:\implies \sf \bigg( x^3+\dfrac{1}{x^3} \bigg) + \bigg( x+\dfrac{1}{x} \bigg) = 115

From eq. (2) Sub the value ,

:\implies \sf x^3+\dfrac{1}{x^3}+5=115

:\implies  \blue{\underline{\boxed{\sf x^3+\dfrac{1}{x^3}=110}}}\ \; \bigstar


QueenOfStars: Exquisite! :)
BrainlyIAS: Thanks siso :-) ♥❤
QueenOfStars: Pleasure! ^^
EvelynAdair: perfect#
BrainlyIAS: Thanks :-) ♥❤
Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\tt{ \sf \green{x^4+\dfrac{1}{x^4}=527}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{  \sf \red{x^3+\dfrac{1}{x^3}}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  Identity  \: used :-  \begin{cases} &\tt{ {x}^{2}  +  {y}^{2} + 2xy =  {(x + y)}^{2}  }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\tt \:  ⟼ {x}^{4}  + \dfrac{1}{ {x}^{4} }  = 527

☆ On adding 2, both sides we get

\tt \:  ⟼ {x}^{4}  + \dfrac{1}{ {x}^{4} }   + 2= 527 + 2

\tt \:  ⟼ {( {x}^{2}) }^{2}  + \dfrac{1}{ {( {x}^{2}) }^{2}}  + 2 \times  {x}^{2}  \times \dfrac{1}{ {x}^{2} }  = 529

\tt \:  ⟼ \:  {\bigg(  {x}^{2}  + \dfrac{1}{ {x}^{2} } \bigg)}^{2}  =  {(23)}^{2}

\tt\implies \: \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 23

☆ On adding 2, on both sides, we get

\tt \:  ⟼ \:  {x}^{2}  + \dfrac{1}{ {x}^{2} } + 2 = 23 + 2

\tt \:  ⟼ \:  {x}^{2}  + \dfrac{1}{ {x}^{2} } + 2 \times x \times \dfrac{1}{x}   = 25

\tt \:  ⟼ \:  { \bigg(x + \dfrac{1}{x}  \bigg)}^{2}  =  {5}^{2}

\tt\implies \:x + \dfrac{1}{x}  = 5

☆ Cubing both sides, we get

\tt \:  ⟼ \:  { \bigg(x + \dfrac{1}{x}  \bigg)}^{3}  =  {5}^{3}

\tt \:  ⟼ \:  {x}^{3}  + \dfrac{1}{ {x}^{3} } + 3 \times x \times \dfrac{1}{x}  \bigg(x + \dfrac{1}{x}  \bigg) = 125

\tt \:  ⟼ \:  {x}^{3}  + \dfrac{1}{ {x}^{3} } + 3 \times 5 = 125

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [\tt \:   \because \: x \:  +  \: \dfrac{1}{x} = 5]

\tt \:  ⟼ \:  {x}^{3}  + \dfrac{1}{ {x}^{3} }  + 15 = 125

\tt \:  ⟼ \:  {x}^{3}  + \dfrac{1}{ {x}^{3} }  = 125 - 15

\tt \:  ⟼ \:  {x}^{3}  + \dfrac{1}{ {x}^{3} }  = 110

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions