• If x4 - 124x2+1 = 0 then find x3+1/x3?
Answers
Hope this will help u
Solution :-
→ x⁴ - 124x² + 1 = 0
→ x²(x² - 124 + 1/x²) = 0
→ x² + 1/x² = 124
→ x² + 1/x² + 2 = 124 + 2
→ (x)² + (1/x)² + 2 * x * (1/x) = 126
→ (x + 1/x)² = 126
→ (x + 1/x) = ±√126
taking √126 ,
→ (x + 1/x) = √126
→ (x + 1/x)³ = 126√126
→ x³ + 1/x³ + 3 * x * 1/x * (x + 1/x) = 126√126
→ x³ + 1/x³ + 3 * √126 = 126√126
→ (x³ + 1/x³) = 126√126 - 3√126
→ (x³ + 1/x³) = 123√126 (Ans.)
taking (-√126),
→ (x + 1/x) = -√126
→ (x + 1/x)³ = -126√126
→ x³ + 1/x³ + 3 * x * 1/x * (x + 1/x) = 126√126
→ x³ + 1/x³ + 3 * (-√126) = -126√126
→ (x³ + 1/x³) = -126√126 + 3√126
→ (x³ + 1/x³) = (-123√126) (Ans.)
Learn more :-
Let a, b and c be non-zero real numbers satisfying (a³)/(b³ + c³) + (b³)/(c³ + a³) + (c³)/(a³ + b³)
https://brainly.in/question/40626097
https://brainly.in/question/20858452
if a²+ab+b²=25
b²+bc+c²=49
c²+ca+a²=64
Then, find the value of
(a+b+c)² - 100 = __
https://brainly.in/question/16231132