Math, asked by blixer29, 11 months ago

If x4 + 3x2 - 7 is divided by 3x + 5 then the possible degrees of quotient and remainder are Select one: a. 3,1 b. 4,1 c. 4,0 d. 3,0

Answers

Answered by knjroopa
8

Step-by-step explanation:

Given The area of a parallelogram field PQRS is 56 units .The diagonals PR and QS intersect each other at point O .Find the area of shaded region

Given If x4 + 3x2 - 7 is divided by 3x + 5 then the possible degrees of quotient and remainder are  

Now given the equation x^4 + 3x^2 – 7 / 3x + 5 , we need to find degree of quotient and the remainder.

So we have  3x + 5 ) x^4 + 3x^2 – 7 ( x^3 / 3 – 5x^2 / 9 + 2/27 x

                        So     x^4 + 5 x^3 / 3

                          ------------------------------------------------------

                                          3x^2 – 5x^3 / 3 – 7

                                            25 x^2 / 9 – 5x^3 / 3

                      -----------------------------------------------------------

                                               2/9 x^2 – 7

                                             2/9 x^2 + 10 x / 27

                                    ---------------------------------------------

                              So                        - 7 – 10 x / 27

So the quotient is x^3/3 – 5x^2 / 9 + 2x / 27 and remainder is – 10 x / 27 – 7

Now the degree of quotient is 3 and remainder is 1

Reference link will be

https://brainly.in/question/17342364

Answered by codiepienagoya
3

Given:

x^4+3x^2-7 \ \ by \ \ 3x+5

To find:

Quotient= ?

Remainder= ?

Solution:

To divide the value we get the remainder and quotient value, which can be described as follows:

Quotient = \frac{x^3}{3}-\frac{5}{9}x^2+\frac{2}{27}x

Remainder= -7 - \frac{10}{27}x

Option a that is 3, 1 is the correct answer.

Similar questions