If x4f(x)-1-sin(2πx)=|f(x)|-2f(x) then 17|f(-2)| is equal to
Answers
Answered by
0
Answer:
Step-by-step explanation:
⇒x^4 f(x)-√1-sin2πx=lf(x)l-2f(x),
⇒Put x=-2,
⇒16f(-2)=√1+sin4π=lf(-2)l-2f(-2),
⇒16f(-2)-1=f(-2)-2f(-2),
⇒If f(-2)>0,
⇒16f(-2)-1=f(-2),
⇒17f(-2)=1,
⇒f(-2)=1/17.
⇒16f(-2)-1=-f(-2)-2f(-2),
⇒If f(-2)<0,
⇒19f(-2)=1,
⇒f(-2)=1/19>0,
So f(-2)=1/17,
⇒17 f(-2)=17×1/17,
⇒17/17 =1.
Hope it helps.
Similar questions