Math, asked by ItsMissReporter, 1 month ago

If xcosθ – ysinθ = a, xsinθ + ycos θ = b, prove that x²+y²=a²+b².

\longrightarrow \sf \pink  {Use \:  correct \:  latex \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\ \longrightarrow \sf \red {Step \:  by \:  step  \: explanation  \: needed!} \\ \longrightarrow \sf \purple {Spam \:  will  \: be  \: reported \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }
Thank you! :) ​

Answers

Answered by mrgoodb62
0

Answer:

Answer

xcosθ−ysinθ=a..1)

xsinθ+ycosθ=b.2)

(1)

2

+(2)

2

(xcosθ−ysinθ)

2

+(xsinθ+ycosθ)

2

=a

2

+b

2

x

2

cos

2

θ+y

2

sin2θ−2xysinθcosθ+x

2

sin

2

θ+y

2

cos

2

θ+2xycosθsinθ=a

2

+b

2

x

2

(cos

2

θ+sin

2

θ)+y

2

(sin

2

θ+cos

2

θ)=a

2

+b

2

x

2

+y

2

=a

2

+b

2

Answered by Anonymous
2

Answer:

ʀᴇғᴇʀ ᴛʜᴇ ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ sɪs

Attachments:
Similar questions