If xcosθ – ysinθ = a, xsinθ + ycos θ = b, prove that x²+y²=a²+b².
Thank you! :)
Answers
Answered by
0
Answer:
Answer
xcosθ−ysinθ=a..1)
xsinθ+ycosθ=b.2)
(1)
2
+(2)
2
(xcosθ−ysinθ)
2
+(xsinθ+ycosθ)
2
=a
2
+b
2
x
2
cos
2
θ+y
2
sin2θ−2xysinθcosθ+x
2
sin
2
θ+y
2
cos
2
θ+2xycosθsinθ=a
2
+b
2
x
2
(cos
2
θ+sin
2
θ)+y
2
(sin
2
θ+cos
2
θ)=a
2
+b
2
x
2
+y
2
=a
2
+b
2
Answered by
2
Answer:
ʀᴇғᴇʀ ᴛʜᴇ ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ sɪs
Attachments:
Similar questions