Math, asked by ItsMissReporter, 1 month ago

If xcosθ – ysinθ = a, xsinθ + ycos θ = b, prove that x²+y²=a²+b².

\longrightarrow \sf {Use  \: correct \:  latex \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\ \longrightarrow \sf {Step \:  by \:  step \:  explanation  \: needed! \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\ \longrightarrow \sf {Spam \:  will \:  be  \: reported \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\ \longrightarrow \sf \ {Posting \:  it  \: second  \: time, so \:  answer \:  properly}
Thank you! Enjoy your day :) ​

Answers

Answered by sandy1816
6

a = xcos \theta - ysin \theta \\ b = xsin \theta + ycos \theta \\  \\  {a}^{2}  +  {b}^{2}  = ( {xcos \theta - ysin \theta})^{2}  + ( {xsin \theta + ycos \theta})^{2}  \\  \\  {a}^{2}  +  {b}^{2}  =  {x}^{2}  {cos}^{2}  \theta +  {y}^{2}  {sin}^{2}  \theta - 2xycos \theta \: sin \theta +  {x}^{2}  {sin}^{2}  \theta +  {y}^{2}  {cos}^{2}  \theta + 2xysin \theta \: cos \theta \\  \\  {a}^{2}  +  {b}^{2}  =  {x}^{2} ( {cos}^{2}  \theta +  {sin}^{2}  \theta) +  {y}^{2} ( {sin}^{2}  \theta +  {cos}^{2}  \theta) \\  \\  {a}^{2}  +  {b}^{2}  =  {x}^{2}  +  {y}^{2}

Similar questions