Math, asked by ManasviM, 1 month ago

If xlog 2 = ylog 4=z log8, then

Plssss don't spam...​

Attachments:

Answers

Answered by Ayush4101
1

Answer:

is attached i Hope this helps you

Attachments:
Answered by user0888
23

The correct option is choice (c).

____________________

Given: x\log2=y\log4=z\log8

\implies x\log2=y\log2^2=z\log2^3

\implies x\log2=2y\log2=3z\log2

\implies y=\dfrac{x}{2} ,z=\dfrac{x}{3}

____________________

Choice (a)

LHS = x

RHS = 6(y+z)=6(\dfrac{x}{2} +\dfrac{x}{3} )=6\times \dfrac{5x}{6} =\boxed{5x}

Hence, LHS ≠ RHS.

____________________

Choice (b)

LHS = 6x

RHS = y+z=\dfrac{x}{2} +\dfrac{x}{3} =\boxed{\dfrac{5x}{6} }

Hence, LHS ≠ RHS.

____________________

Choice (c)

LHS = 5x

RHS = 6(y+z)=6(\dfrac{x}{2} +\dfrac{x}{3} )=6\times \dfrac{5x}{6} =\boxed{5x}

Hence, LHS = RHS.

____________________

Choice (d)

LHS = 5(x+y)=5(x+\dfrac{x}{2} )=\boxed{\dfrac{15x}{2} }

RHS = 6z=6\times \dfrac{x}{3} =\boxed{2x}

Hence, LHS ≠ RHS.

Similar questions