Math, asked by Sweetyhoty5863, 1 year ago

If xpower 1/3 +y power1/3+ zpower1/3=0 then find the value of x+y+z power cube

Answers

Answered by MaheswariS
2

Answer:

(x+y+z)^3=27xyz

Step-by-step explanation:

Formula used:

If x+y+z=0 then x^3+y^3+z^3=3xyz

Given:

x^{\frac{1}{3}}+y^{\frac{1}{3}}+z^{\frac{1}{3}}=0

Using the above formula,

(x^{\frac{1}{3}})^3+(y^{\frac{1}{3}})^3+(z^{\frac{1}{3}})^3=3(x^{\frac{1}{3}}y^{\frac{1}{3}}z^{\frac{1}{3}})

\implies\:x+y+z=3(xyz)^{\frac{1}{3}}

Now,

(x+y+z)^3

=(3(xyz)^{\frac{1}{3}})^3

=3^3((xyz)^{\frac{1}{3}})^3

=27xyz

Similar questions