If xsin^3theta +y cos^3 theta = sin theta . cos thta and x sin thta = y cos theta then prove that x^2+y^2 =1
Answers
Answered by
10
Hey there !!!!!!!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
xsin³θ+ycos³θ=sinθcosθ
xsinθsin²θ+ycosθcos²θ=sinθcosθ
But according to question xsinθ=ycosθ
So,
ycosθsin²θ+ycosθcos²θ=sinθcosθ
ycosθ(sin²θ+cos²θ)=sinθcosθ
sin²θ+cos²θ=1
ycosθ(sin²θ+cos²θ)=sinθcosθ
ycosθ=sinθcosθ
y=sinθ
xsinθ=ycosθ
But y=sinθ
So,
xsinθ=sinθcosθ
x=cosθ y=sinθ
=x²+y²
=sin²θ+cos²θ
=1
LHS=RHS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you...............
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
xsin³θ+ycos³θ=sinθcosθ
xsinθsin²θ+ycosθcos²θ=sinθcosθ
But according to question xsinθ=ycosθ
So,
ycosθsin²θ+ycosθcos²θ=sinθcosθ
ycosθ(sin²θ+cos²θ)=sinθcosθ
sin²θ+cos²θ=1
ycosθ(sin²θ+cos²θ)=sinθcosθ
ycosθ=sinθcosθ
y=sinθ
xsinθ=ycosθ
But y=sinθ
So,
xsinθ=sinθcosθ
x=cosθ y=sinθ
=x²+y²
=sin²θ+cos²θ
=1
LHS=RHS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Hope this helped you...............
Similar questions