Math, asked by abhishekbgs5902, 1 year ago

If xsin(a+y)+sinacos(a+y)=0,provethatdydx=sin2(a+y)sina

Answers

Answered by adityarajsingh3
0
Answer:

The Proof is given in the Explanation.

Explanation:

siny=xsin(a+y).

∴x=sinysin(a+y).

Differentiating w.r.t. y, using the Quotient Rule,we have,

dxdy=sin(a+y)⋅ddy{siny}−siny⋅ddx{sin(a+y)}sin2(a+y),

=sin(a+y)cosy−sinycos(a+y)⋅ddy(a+y)sin2(a+y),...[The Chain Rule],

=sin(a+y)cosy−sinycos(a+y)sin2(a+y),

=sin{(a+y)−y}sin2(a+y),

=sinasin2(a+y).

⇒dydx=1dxdy=sin2(a+y)sina.

Similar questions