If xsinθ = ycosθ and ysin³θ + xcos³θ = sinθcosθ. Then find the value of x² + y².
Answers
Correct Question
If xsinθ = ycosθ and xsin³θ + ycos³θ = sinθcosθ. Then find the value of x² + y².
Answer
1
Explanation
Given
xsin∅ = ycos∅
xsin³∅ + ycos³∅ = sin∅cos∅
The second equation can be written as
xsin∅(sin²∅) + ycos³∅ = sin∅cos∅
Put xsin∅ as ycos∅
→ ycos∅(sin²∅) + ycos³∅ = sin∅cos∅
→ ycos∅(sin²∅ + cos²∅) = sin∅cos∅
→ y cos∅ = sin∅cos∅
(using, sin²∅ + cos²∅ = 1)
→ y = sin∅
And, xsin∅ = ycos∅
→ xsin∅ = sin∅cos∅ (since y = sin∅)
→ x = cos∅
So, x² + y² = cos²∅ + sin²∅ = 1
Correct Question :--- If xsinθ = ycosθ and xsin³θ + ycos³θ = sinθcosθ. Then find the value of x² + y². ?
Solution :---
it is Given That,
→ xsinθ = ycosθ ------------------- Equation (1)
→ xsin³θ + ycos³θ = sinθcosθ
→ (xsinθ)*sin²θ + ycos³θ = sinθcosθ
Putting value of (xsinθ = ycosθ) From Equation (1) we get,
→ ycosθ*sin²θ + ycos³θ = sinθcosθ
Taking ycosθ common From LHS now,
→ ycosθ( sin²θ + cos²θ ) = sinθcosθ
Now, we know that , sin²θ + cos²θ = 1..
So,
→ ycosθ * 1 = sinθcosθ
Dividing both sides by cosθ now,
→ y = sinθ ----------------- Equation (2)
_____________________________
Putting value of Equation (2) in Equation (1) now, we get,
→ xsinθ = sinθ * cosθ
Diving sinθ both sides now, we get,
→ x = cosθ ------------------ Equation(3).
_____________________
So,
→ x² + y²
putting value of Equation (2) and Equation (3) we get,
→ (cosθ)² + (sinθ)²
→ cos²θ + sin²θ