Math, asked by Anonymous, 10 months ago

If xsin²¢ + ycos²¢ = sin¢×cos¢ and xsin¢=ycos¢ prove that x²+y²=1​

Attachments:

Answers

Answered by BrainlyPopularman
10

CORRECT Question :

▪︎ If  \:  \: { \bold{x  \: {sin}^{2} \theta + y \:  {cos}^{2} \theta   =  sin( \theta) . cos( \theta) }} \:  \: and  \:  \: { \bold{x  \: sin( \theta)   = y cos( \theta) }} \:  \: then prove that  \:  \: { \bold{x  + y = 1 }} \:  \:

ANSWER :

GIVEN

 \:  \: { \huge{.}} \:  \: { \bold{x  \: {sin}^{2} \theta + y \:  {cos}^{2} \theta   =  sin( \theta) . cos( \theta) }} \:  \:

 \:  \: { \huge{.}} \:  \: { \bold{x  \: sin( \theta)   = y cos( \theta) }} \:  \:

TO PROVE :

 \:  \: { \huge{.}} \:  \: { \bold{{ \bold{x  + y = 1 }}  }} \:  \:

SOLUTION :

According to the given condition –

 \\  \:  \implies \:  { \bold{x  \: {sin}^{2} \theta + y \:  {cos}^{2} \theta   =  sin( \theta) . cos( \theta) }} \:  \: \\

• We should write this as –

 \\  \:  \implies \:  { \bold{ \dfrac{x  \: {sin}^{2} \theta + y \:  {cos}^{2} \theta  }{ sin( \theta) .cos( \theta) }=  1}} \:  \: \\

 \\  \:  \implies \:  { \bold{  \dfrac{x  \: {sin}^{2} \theta }{ sin( \theta) . cos( \theta) }{+  \dfrac{y \:  {cos}^{2} \theta  }{ sin( \theta) . cos( \theta) }}=  1}} \:  \: \\

 \\  \:  \implies \:  { \bold{  \dfrac{x  \: {sin} \theta }{ cos( \theta) }{+  \dfrac{y \:  {cos} \theta  }{ sin( \theta)  }} =  1}} \:  \: \\

• using identity –

 \\  \:  \longrightarrow \:  { \pink{ \bold{  \dfrac{ \: {sin} \theta }{ cos\theta}  =  tan( \theta) \:  \:  \:  \:  \:  and \:  \: \:  \:  \: { \dfrac{  {cos} \theta  }{{ sin} \theta \:   } =  cot( \theta) }}}} \:  \: \\

• So that –

 \\  \:  \implies \:  { \bold{  x  \: tan( \theta)  +  ycot( \theta) =  1 \:  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)}} \:  \: \\

• Now using another condition –

  \\ \:  \implies { \bold{x  \: sin( \theta)   = y cos( \theta) }} \:  \: \\

• So that –

  \\ \:  \implies { \bold{ \dfrac{ sin \theta }{ cos{ \theta}}  =   \dfrac{y}{x}  \:  \:  \:  \: and \:  \:  \:  \:  \dfrac{cos \theta}{sin \theta}  =  \dfrac{x}{y}  }} \:  \: \\

  \\ \:  \implies { \bold{ tan{ \theta}  =   \dfrac{y}{x}  \:  \:  \:  \: and \:  \:  \:  \:  cot{ \theta}  =  \dfrac{x}{y}  }} \:  \: \\

• Now put the values in eq.(1) –

 \\  \:  \implies \:  { \bold{  \cancel x  \: ( \dfrac{y}{ \cancel x}  )+   \cancel y( \dfrac{x}{ \cancel y})  =  1}} \:  \: \\

 \\  \:  \implies \large { \red{ \boxed{ \bold{  x + y  =  1}}}} \:  \: \\

 \\  \:   \:  \:  \:  \:  \:  \large { \boxed { \boxed{ \bold{Hence \:  \: proved}}}} \:  \: \\

Similar questions