If xsin³∅ + y cos³ ∅ = sin∅ . Cos∅ and xsin∅ = ycos∅, prove that x² + y² = 1
Answers
Answered by
7
hope this answer will help you.
Attachments:
Answered by
18
Solution
→ x sin∅ = y cos∅ [Given]
________________________
→ x sin³∅ + y cos³∅ = sin∅ cos∅
→ x sin∅(sin²∅) + y cos∅(cos²∅) = sin∅ cos∅
→ x sin∅(sin²∅) + x sin∅(cos²∅) = sin∅ cos∅
→ x sin∅(sin²∅ + cos²∅) = sin∅ cos∅
→ x = cos∅
Now, x sin∅ = y cos∅
→ y = sin∅
→ cos²∅ + sin²∅ = 1 [Identity]
→ x² + y² = 1
Q.E.D
Similar questions