If xsin³¢ + ycos³¢ = sin¢cos¢ and xsin¢ = ycos¢ , prove that x²+y²= 1.
Answers
Answered by
10
Here It Is...
genius
genius
Attachments:
Answered by
27
Heya !!!
X Sin³ theta + Y Cos³ theta = Sin theta × Cos theta
=> (X Sin theta) Sin²theta + (Y cos theta) Cos²theta = Sin theta × Cos theta
=> (X sin theta) Sin²theta + (X sin theta) Cos²theta = Sin theta × Cos theta [ Y cos theta = X sin theta ]
=> (X Sin theta) (Sin²theta + Cos²theta) = Sin theta× Cos theta
=> X sin theta × 1 = Sin theta × Cos theta
=> X sin theta = Sin theta × Cos theta
=> X = Sin theta × Cos theta/Sin theta
=> X = Cos theta--------(1)
Now,
X sin theta = Y cos theta
=> Cos theta × Sin theta = Y cos theta [ X = Cos theta]
=> Y = Cos theta × Sin theta/Cos theta
=> Y = Sin theta -----------(2)
To prove :- X² + Y² = 1
LHS = X² + Y²
(Cos)² + (Sin)²
=> 1
Hence,
LHS = RHS = 1...... PROVED....
HOPE IT WILL HELP YOU....... :-)
X Sin³ theta + Y Cos³ theta = Sin theta × Cos theta
=> (X Sin theta) Sin²theta + (Y cos theta) Cos²theta = Sin theta × Cos theta
=> (X sin theta) Sin²theta + (X sin theta) Cos²theta = Sin theta × Cos theta [ Y cos theta = X sin theta ]
=> (X Sin theta) (Sin²theta + Cos²theta) = Sin theta× Cos theta
=> X sin theta × 1 = Sin theta × Cos theta
=> X sin theta = Sin theta × Cos theta
=> X = Sin theta × Cos theta/Sin theta
=> X = Cos theta--------(1)
Now,
X sin theta = Y cos theta
=> Cos theta × Sin theta = Y cos theta [ X = Cos theta]
=> Y = Cos theta × Sin theta/Cos theta
=> Y = Sin theta -----------(2)
To prove :- X² + Y² = 1
LHS = X² + Y²
(Cos)² + (Sin)²
=> 1
Hence,
LHS = RHS = 1...... PROVED....
HOPE IT WILL HELP YOU....... :-)
Similar questions