Math, asked by MyL0ve, 6 months ago

if xsin³A+ycos³A=sinA.cosA and xsinA=ycosA prove that x²+y²=1​

Answers

Answered by MaIeficent
9

Step-by-step explanation:

Given:-

  • xsin³A + ycos³A = sinA.cosA

  • x sinA = y cosA

To Prove:-

  • x² + y² = 1

Proof:-

\sf \implies x {sin}^{3} A = y {cos}^{3} A = sinA.cosA

\sf \implies (xsinA) \:  {sin}^{2} A  +  (y cosA) \: {cos}^{2} A = sinA.cosA

Since, x sinA = y cosA....(i)

\sf \implies (xsinA) \:  {sin}^{2} A  +  (xsinA) \: {cos}^{2} A = sinA.cosA

\sf \implies (xsinA)  \big[{sin}^{2} A  + {cos}^{2} A \big] = sinA.cosA

\sf \implies xsinA= sinA.cosA

 \implies \boxed{\textsf{\textbf{x  = cosA}}}

Substitute x = cosA in (i)

\sf \implies x sinA = y cosA

\sf \implies cosA.sinA = y cosA

 \implies \boxed{\textsf{\textbf{y  = sinA}}}

Now, x² + y²

= sin²A + cos²A = 1

\large \dashrightarrow \underline{\boxed{\therefore \bf{  \: {x}^{2}  +  {y}^{2}  = 1}}}

Hence, Proved

Answered by ADARSHBrainly
67

{\large{\underline{\boxed{\bf{\pink{Given:}}}}}}

  • xsin³A+ycos³A=sinA.cosA
  • xsinA=ycosA

{\large{\underline{\boxed{\bf{\pink{To  \:  \: prove :}}}}}}

  • x²+y²=1

{\Large{\underline{\boxed{\bf{\red{Solution:}}}}}}

xsin³A + ycos³A = sinAcosA.

(xsinA) sin²A + (ycosA) cos²A = sinAcosA.

We know that [ ycosA = xsinA].

(xsinA) sin²A + (xsinA) cos²A = sinAcosA

(xsinA) (sin²A + cos²A) = sinAcosA.

xsinA = sinAcosA(1).

Sin²A + Cos²A = 1

x = cosA

Squaring both side

x² = cos²A (2).

Now,

xsinA = ycosA.

cosAsinA = ycosA[ From equal(1)].

y = sinA

Squaring both side

y² = sin²A (3).

Adding equation (2) and (3).

x² + y² = sin²A + cos²A.

{\large{\underline{\boxed{\bf{\green{x² + y² = 1.}}}}}}

Hence, it is proved

Similar questions