if xsin³A+ycos³A=sinA.cosA and xsinA=ycosA prove that x²+y²=1
Answers
Answered by
9
Step-by-step explanation:
Given:-
- xsin³A + ycos³A = sinA.cosA
- x sinA = y cosA
To Prove:-
- x² + y² = 1
Proof:-
Since, x sinA = y cosA....(i)
Substitute x = cosA in (i)
Now, x² + y²
= sin²A + cos²A = 1
Hence, Proved
Answered by
67
- xsin³A+ycos³A=sinA.cosA
- xsinA=ycosA
- x²+y²=1
⟹ xsin³A + ycos³A = sinAcosA.
⟹ (xsinA) sin²A + (ycosA) cos²A = sinAcosA.
We know that [ ycosA = xsinA].
⟹ (xsinA) sin²A + (xsinA) cos²A = sinAcosA
⟹ (xsinA) (sin²A + cos²A) = sinAcosA.
⟹ xsinA = sinAcosA(1).
Sin²A + Cos²A = 1
⟹ x = cosA
Squaring both side
⟹ x² = cos²A (2).
Now,
⟹ xsinA = ycosA.
⟹ cosAsinA = ycosA[ From equal(1)].
⟹ y = sinA
Squaring both side
⟹ y² = sin²A (3).
Adding equation (2) and (3).
⟹ x² + y² = sin²A + cos²A.
Hence, it is proved
Similar questions