if xsin³Q+y cos³Q = sinQcosQ and xsinQ = y cosQ. prove that x²+y²=1
Answers
Answered by
1
Answer:
xsin³∅+ ycos³∅ = sin ∅cos∅
⇒ ( xsin∅ ) sin²∅ + ( ycos∅ ) cos ²∅ = sin∅ cos ∅
⇒ xsin∅ ( sin∅ ) ²+ ( xsin∅ ) ²cos∅ = sin∅cos∅
{ ∵ xsin∅ = ycos∅ }
⇒ xsin∅ [ sin∅² + cos∅ ²] = sin∅ cos∅
⇒ xsin∅ = sin∅cos∅
or x = cos∅
Now ,
xsin∅ = ycos∅
⇒ cos∅.sin∅ = ycos∅
⇒ y = sin∅
Hence
x² + y² = cos² + sin²
= 1
Similar questions