Math, asked by sahid4344, 1 year ago

If xsquare+ysquare=30xy,then prove that 2log(x+y)=logx+logy+5log2

Answers

Answered by ihrishi
1

Step-by-step explanation:

On the RHS of the equation instead of 30xy, there should be 32 xy to give the required proof: \\ \\ \because 32=2^5     \\

So, if it is 32xy on the RHS, then:

 {x}^{2}  +  {y}^{2}  = 32xy \\ applying \: log \: on \: both \: sides \: we \: \\  find:  \\ log \: {x}^{2}  + log \:  {y}^{2}  = log \: (32 \: x \: y) \\  \therefore \: 2log \: x + 2log \: y = log \: x  +  log \: y  + log \: 32 \\ 2( log \: x   +  log \: y ) = log \: x  +  log \: y  + log \:  {2}^{5}  \\  2 \: log \: (x y) = log \: x  +  log \: y  +5 log \:  {2}\\ \\ Logarithmic \: laws\: used\: are\:\\ given\: below\\ log (mn)= log m+ log n\: or\: vice-versa\\ log m^n= n logm

Similar questions