Math, asked by chayat3082, 1 year ago

If xy = 1 x-y = 2root over 3, find x+y

Answers

Answered by jitekumar4201
8

Answer:

( x + y ) = 4

Step-by-step explanation:

Given that -

xy = 1

x - y = 2\sqrt{3}

Squaring on both sides

We have, (x-y)^{2} = [2\sqrt{x}]^{2}

Formula (a+b)^{2} = a^{2} + b^{2} + 2ab \\x^{2} + y^{2} - 2xy = 2^{2} \sqrt{3} ^{2} \\x^{2} + y^{2} -2.1 = 4 \times 3 \\x^{2} + y^{2} - 2 = 12 \\x^{2} + y^{2} = 12 + 2 \\x^{2} + y^{2} = 14 \\Adding \ 2xy \ on \ both \  sides, \\We \  get, x^{2} + y^{2} + 2xy = 14 + 2xy \\We \  know  : a^{2} + b^{2} + 2ab = (a+b)^{2}

(x+y)^{2} = 14 + 2

(x+y)^{2}  = 16

( x + y ) = \sqrt{16}

( x + y ) = 4                

Similar questions