Math, asked by shilpiagarwal882, 1 year ago

if (xy)^(a-1)=z, (yz)^(b-1)=x, (xz)^(c-1)=y, and xyz is not -1,0 or 1, then which of the following is equal to ab+bc+ca?
a. abc
b. abc÷2
c. 2abc
d. 3abc

Answers

Answered by Swarup1998
1

Given:

  • (xy)^{a-1}=z,\:(yz)^{b-1}=x,\:(zx)^{c-1}=y

  • xyz\neq -1,\:0,\:1

To find: the value of ab+bc+ca

Solution:

Given, (xy)^{a-1}=z,\:(yz)^{b-1}=x,\:(zx)^{c-1}=y

Taking log, we get

  • \quad (a-1)\:log(xy)=log(z)
  • \Rightarrow a=\frac{log(xyz)}{log(xy)}

  • \quad (b-1)\:log(yz)=log(x)
  • \Rightarrow b=\frac{log(xyz)}{log(yz)}

  • \quad (c-1)\:log(zx)=log(y)
  • \Rightarrow c=\frac{log(xyz)}{log(zx)}

Then, ab+bc+ca

=\frac{\{log(xyz)\}^{2}}{log(xy).log(yz)}+\frac{\{log(xyz)\}^{2}}{log(yz).log(zx)}+\frac{\{log(xyz)\}^{2}}{log(zx).log(xy)}

=\{log(xyz)\}^{2}\left[\frac{log(xy)+log(yz)+log(zx)}{log(xy).log(yz).log(zx)}\right]

=\{log(xyz)\}^{2}\times\frac{log(x^{2}y^{2}z^{2})}{log(xy).log(yz).log(zx)}

=\{log(xyz)\}^{2}\times\frac{log\{(xyz)^{2}\}}{log(xy).log(yz).log(zx)}

=\{log(xyz)\}^{2}\times \frac{2\times log(xyz)}{log(xy).log(yz).log(zx)}

=2\times\frac{\{log(xyz)\}^{3}}{log(xy).log(yz).log(zx)}

=2\times\frac{log(xyz)}{log(xy)}\times\frac{log(xyz)}{log(yz)}\times\frac{log(xyz)}{log(zx)}

=2abc

\Rightarrow ab+bc+ca=2abc

Answer: Option C) 2abc is correct.

Similar questions