Math, asked by ektagupta261181, 1 day ago

If xy = b and 1/x^2 + 1/y^2 = a, then (x + y)^2 equals =

Answers

Answered by PharohX
1

Answer:

Given

 \sf \: xy = b

 \sf \:  \frac{1}{ {x}^{2} }  +  \frac{1 }{ {y}^{2} }  = a \\

 \sf \:  \frac{ {x}^{2} +  {y}^{2}  }{ {x}^{2} {y}^{2}  }    = a \\

 \sf \:  {x}^{2}  +  {y}^{2}  = a {x}^{2} {y}^{2}

 \sf \:  {x}^{2}  +  {y}^{2}  = a {(xy)}^{2}

 \sf \:  {x}^{2}  +  {y}^{2}  = a {b}^{2}

Now

 \sf \: ( {x}+  {y)}^{2}  =  {x}^{2}  +2xy +   {y}^{2}

 \sf \: ( {x}+  {y)}^{2}  =  {x}^{2}   +    {y}^{2}  + 2xy

 \sf \: ( {x}+  {y)}^{2}  =   {ab}^{2}  + b

 \sf \: ( {x}+  {y)}^{2}  = b ( ab + 1)

Similar questions