Math, asked by nashwaanees, 1 year ago

if xy=c^2 proove that x^2 dy/dx+c^2=0

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{xy=c^2}

\underline{\textbf{To prove:}}

\mathsf{x^2\;\dfrac{dy}{dx}+c^2=0}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{xy=c^2}

\textsf{Using product rule, differentiate with respect to 'x'}

\mathsf{x\;\dfrac{dy}{dx}+y.1=0}

\mathsf{x\;\dfrac{dy}{dx}+y=0}

\mathsf{x\;\dfrac{dy}{dx}+\dfrac{c^2}{x}=0}\;\;\;\mathsf{(\because\;xy=c^2\;\implies\;y=\dfrac{c^2}{x})}

\textsf{Multiply bothsides by 'x', we get}

\boxed{\bf\;\;x^2\;\dfrac{dy}{dx}+c^2=0}

\underline{\textbf{Product rule:}}

\boxed{\begin{minipage}{5cm}$\\\mathsf{\dfrac{d(uv)}{dx}=u\;\dfrac{dv}{dx}+v\;\dfrac{du}{dx}}$\\\end{minipage}}

Similar questions