Math, asked by kunal708, 11 months ago

if xy=e^x-y then show that dy/dx=y(x-1)/x(y+1)​

Answers

Answered by mumtazkhan99
6

given:

xy =  {e}^{x - y}

 \frac{dy}{dx}  =    \frac{y(x - 1)}{x(y + 1)}  \\

solution:

taking log on both side,

 log(xy)  =  log( {e}^{x - y} )

differentiate w.r.t x.

 \frac{d(logxy)}{dx}  =   \frac{d}{dx}  \times  log( {e}^{x - y} )

 \frac{d}{dx}  \times ( log(x)  +  log(y) ) =  \frac{d}{dx}  \times  log( log( {e}^{x - y} ) )

 \frac{1}{x}  +  \frac{1}{y}  \times  \frac{dy}{dx}  =  \frac{1}{ {e}^{x - y} }  -  \frac{dy}{dx}

 \frac{1}{y}  \times  \frac{dy}{dx} +  \frac{dy}{dx}   =  \frac{1}{ {e}^{x - y} }  -  \frac{1}{x}

 \frac{dy}{dx}  \times ( \frac{1}{y}  + 1) =  \frac{1}{ {e}^{x - y} }  -  \frac{1}{x}

 \frac{dy}{dx}  =       \frac{1}{ {e}^{x - y} }  -  \frac{1}{x}  \div ( \frac{1}{y}  + 1)

the value of dy/ dx.

Similar questions