Math, asked by Infia, 2 months ago

If Xy = Ex-y, prove that . dy/DX =logx/(log ec)2​

Answers

Answered by King412
61

 \\    \underline \red{\large\rm \underline{Given :- }} \\

  •  \sf{x}^{y}  =  {e}^{x - y}

 \\    \underline \red{\large\rm \underline{To  \: prove :- }} \\

  • \sf \dfrac{dy}{dx} =  \dfrac{ \log  \: x}{ {{(1}\log \: x)^{2} }}

 \\    \underline \red{\large\rm \underline{ \: Proof :- }} \\

 \\  \:  \: \sf{x}^{y}  =  {e}^{x - y}  \\

To prove this , we need to take log in both side of above equation ,

So,

 \\  \:  \sf\log \: \sf{x}^{y}  = \log \:   {e}^{x - y}  \\

Therefore,

 \\  \sf \:  \:  \:  \: y \: log \: x \:  = (x - y) \: log \: e \\

 \\  \sf \:  \:  \:  \: y \: log \: x \:  = (x - y) \:  \\

 \\  \sf \:  \:  \:  \:  \: log \: x \:  = \dfrac{ (x - y) }{y}\:  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \qquad \:  \qquad Or \\

 \\  \:  \:  \therefore \:  \sf \:  \:  \:  \:  \:  \: \frac{y}{x} \:  = \dfrac{ 1 }{(1 +  \log \: x)}\:  \dots \: (1) \\

Now, let's Differentiating bothe side with respect to x,

 \\  \sf \:  \: y \frac{1}{x}  +  \log \: x  \: \times  \:  \frac{dy}{dx}  = 1 -  \frac{dy}{dx}  \\

 \\  \sf \:  \:  \:  \:  :  \longmapsto \:  \log \: x \:  \times  \:  \frac{dy}{dx}  +  \frac{dy}{dx}  = 1 -  \frac{y}{x}  \\

 \\  \sf \:  \:  \:  \:  :  \longmapsto \:(1 +   \log \: x )\:    \frac{dy}{dx}  = 1 -  \frac{y}{x}  \\

 \\  \sf \:  \:  \:  \:  :  \longmapsto \:(1 +   \log \: x )\:    \frac{dy}{dx}  =  \frac{1( x)}{x} -  \frac{y}{x}  \\

 \\  \sf \:  \:  \:  \:  :  \longmapsto \:(1 +   \log \: x )\:    \frac{dy}{dx}  =   \frac{y \log \: x}{x}  \\

 \\  \: \qquad \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dots \sf  \:by (1)  \bigg \{\:  \sf \:  \: \frac{y}{x} \:  = \dfrac{ 1 }{(1 +  \log \: x)}\:   \bigg \} \\

 \\  \sf \:  \:  \:  \:   \:\:    \frac{dy}{dx}  =   \frac{y \log \: x}{x.(1 +  \log \: x)}  \\

 \\  \: \qquad \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dots \sf  \:by (1)  \bigg \{\:  \sf \:  \: \frac{y}{x} \:  = \dfrac{ 1 }{(1 +  \log \: x)}\:   \bigg \} \\

 \\  \sf \:  \:  \:  \:  \:  \:  \qquad \boxed{\sf \dfrac{dy}{dx} =  \dfrac{ \log  \: x}{ {{(1}\log \: x)^{2} }}  }\\

Hence proved.

Similar questions