Math, asked by lovely7951, 10 months ago

if xy=log(xy)=log(xy) then show that dy/dx= -y/x​

Answers

Answered by kaushik05
78

Given:

 \star   \:  \: \bold{ xy =  log(xy) }

To show :

 \star \:  \bold{  \frac{dy}{dx}  =  -  \frac{ y}{x}  } \\

Solution:

 \implies \: xy =  log(xy)

Differentiate w.r.t both sides :

  \implies \:  \frac{d}{dx} (xy) =  \frac{d}{dx} ( log(xy) ) \\  \\  \implies \: x \:  \frac{d}{dx} (y) + y \:  \frac{d}{dx} (x) =  \frac{1}{ (xy) }  \times  \frac{d}{dx} (xy) \\  \\  \implies \: x \frac{dy}{dx}  + y(1) =  \frac{1}{xy} (x \frac{dy}{dx}  + y) \\  \\  \implies \: x \frac{dy}{dx}  + y =  \frac{ \cancel{x}}{ \cancel{x}y}  \frac{dy}{dx}  +  \frac{ \cancel{y}}{x \cancel{y}}  \\  \\  \implies \: x \frac{dy}{dx}  + y =  \frac{1}{y}  \frac{dy}{dx}  +  \frac{1}{x}  \\  \\  \implies \: x \frac{dy}{dx}  -  \frac{1}{y}  \frac{dy}{dx}  =  \frac{1}{x}  - y \\  \\  \implies \:  \frac{dy}{dx} (x -  \frac{1}{y} ) =  \frac{1 - xy}{x}   \\  \\  \implies \:  \frac{dy}{dx} ( \frac{xy - 1}{y} ) =  - ( \frac{xy - 1}{x} ) \\  \\  \implies \:  \frac{dy}{dx} (  \frac{ \cancel {xy - 1}}{y} ) = -  ( \frac{ \cancel{xy - 1}}{x} ) \\  \\  \implies \:  \frac{dy}{dx}  =  -  \frac{y}{x}

Hence proved .

Formula used :

 \star  \boxed{  \bold{ \red{ \frac{d}{dx} (u.v) = u \:  \frac{dv}{dx}   + v \:  \frac{du}{dx} }}}

 \star \boxed{  \green{\bold{  \frac{d}{dx}  log(x)  =  \frac{1}{x} }}}


Anonymous: Awesome
Similar questions