Math, asked by devyanilanjewar42, 1 day ago

If xy=(x+y)^n and dy/dx= y/x, then n=

Answers

Answered by senboni123456
6

Step-by-step explanation:

We have,

 \tt{ \green{xy = (x + y)^{n}} }

 \sf{ \implies \: y  + x \dfrac{dy}{dx}= n(x + y)^{(n - 1)} \cdot \bigg(1 +  \dfrac{dy}{dx}  \bigg)}

 \sf{ \implies \: y  + x \dfrac{dy}{dx}= n(x + y)^{(n - 1)}  + n(x + y)^{(n - 1)}  \cdot \dfrac{dy}{dx}  }

 \sf{ \implies \: y   -  n(x + y)^{(n - 1)}   =  n(x + y)^{(n - 1)}  \cdot \dfrac{dy}{dx}  -  x \dfrac{dy}{dx}}

 \sf{ \implies \: y   -  n(x + y)^{(n - 1)}   =   \{n(x + y)^{(n - 1)}    -  x \} \dfrac{dy}{dx}}

 \sf{ \implies \:  \dfrac{y   -  n(x + y)^{(n - 1)} }{  n(x + y)^{(n - 1)}    -  x }  =  \dfrac{dy}{dx}}

 \sf{ \implies \:   \dfrac{dy}{dx} =  \dfrac{y   -  n(x + y)^{(n - 1)} }{  n(x + y)^{(n - 1)}    -  x }  }

Now, it is given that \rm{\dfrac{dy}{dx}=\dfrac{y}{x}}

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:xy =  {(x + y)}^{n}

On taking log on both sides, we get

\rm :\longmapsto\:log(xy) = log {(x + y)}^{n}

We know that,

\boxed{ \tt{ \: logxy = logx + logy \: }}

and

\boxed{ \tt{ \: log {x}^{y} = ylogx \: }}

So, using this, we get

\rm :\longmapsto\:logx + logy = nlog(x + y)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\bigg[logx + logy\bigg] = \dfrac{d}{dx}nlog(x + y)

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{d}{dx}logx + \dfrac{d}{dx}logy = n\dfrac{d}{dx}log(x + y)

\rm :\longmapsto\:\dfrac{1}{x}  + \dfrac{1}{y}\dfrac{dy}{dx}  = n\dfrac{1}{x + y} \dfrac{d}{dx}(x + y)

\rm :\longmapsto\:\dfrac{1}{x}  + \dfrac{1}{y}\dfrac{dy}{dx}  = \dfrac{n}{x + y}\bigg[1 + \dfrac{dy}{dx} \bigg]

As it is given that,

\boxed{ \tt{ \: \dfrac{dy}{dx} =  \frac{y}{x} \: }}

So, on substituting the value in above, we get

\rm :\longmapsto\:\dfrac{1}{x}  + \dfrac{1}{y} \times \dfrac{y}{x}  = \dfrac{n}{x + y}\bigg[1 + \dfrac{y}{x} \bigg]

\rm :\longmapsto\:\dfrac{1}{x}  + \dfrac{1}{x}  = \dfrac{n}{x + y}\bigg[ \dfrac{x + y}{x} \bigg]

\rm :\longmapsto\:\dfrac{2}{x}  = \dfrac{n}{x}

\rm \implies\:\boxed{ \tt{ \:  \: n \:  =  \: 2 \:  \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions