Math, asked by sivbhakuda, 6 days ago

If xy + yz + zx = -1, then the value of (x+y/1+xy + z+y/1+zy + x+z/1+zx)​

Answers

Answered by steffiaspinno
0

\frac{1}{xyz}

Given that

xy + yz + zx = -1

Therefore

-1 = xy + yz + zx

1 = -(xy + yz + zx)

1 = -xy - yz - zx

To find, the value of

\frac{x+y}{1+xy} + \frac{z+y}{1+zy} + \frac{x+z}{1+zx}

substitute -xy - yz - zx for 1

= \frac{x+y}{-xy - yz - zx+xy} + \frac{z+y}{-xy - yz - zx+zy} + \frac{x+z}{-xy - yz - zx+zx}

= \frac{x+y}{-yz-zx} + \frac{z+y}{-xy-zx} + \frac{x+z}{-xy-yz}

= \frac{x+y}{-z(y+x)} + \frac{z+y}{-x(y+z)} + \frac{x+z}{-y(x+z)}

= \frac{1}{-z} + \frac{1}{-x} + \frac{1}{-y}

= -\frac{1}{z}-\frac{1}{x}-\frac{1}{y}

= -(\frac{1}{z} + \frac{1}{x} + \frac{1}{y})

= -\frac{xy + yz + zx}{xyz}

= -\frac{-1}{xyz}

= \frac{1}{xyz}

The value of \frac{x+y}{1+xy}+\frac{z+y}{1+zy}+\frac{x+z}{1+zx} is \frac{1}{xyz}

Similar questions