Math, asked by koiralajamuna, 5 days ago

If xyz=1
prove (1/1+x+y^-1)+(1/1+y+z^-1)+(1+z+x^-1)=1 ​

Answers

Answered by akszone11
0

Answer:

1

Step-by-step explanation:

Given:- xyz=1

To prove:- (1+x+y  

−1

)  

−1

+(1+y+z  

−1

)  

−1

+(1+z+x  

−1

)  

−1

=1

Proof:-

Taking L.H.S.-

(1+x+y  

−1

)  

−1

+(1+y+z  

−1

)  

−1

+(1+z+x  

−1

)  

−1

 

=(1+x+xz)  

−1

+(1+y+xy)  

−1

+(1+z+yz)  

−1

 

=(1+x+xz)  

−1

+(xyz+y+xy)  

−1

+(1+z+yz)  

−1

 

=(1+x+xz)  

−1

+y  

−1

(1+x+xz)  

−1

+(1+z+yz)  

−1

 

=(1+x+xz)  

−1

(1+y  

−1

)+(1+z+yz)  

−1

 

=(xyz+x+xz)  

−1

(1+y  

−1

)+(1+z+yz)  

−1

 

=x  

−1

(1+z+yz)  

−1

(1+y  

−1

)+(1+z+yz)  

−1

 

=(1+z+yz)  

−1

(x  

−1

+(xy)  

−1

)+(1+z+yz)  

−1

 

=(1+z+yz)  

−1

(yz+z+1)

=  

1+z+yz

1+z+yz

 

=1

= R.H.S.

Similar questions