If xyz=1, prove that
Answers
Answered by
2
Answer is 1
Step-by-step explanation:
Given that xyz=1
⟹y−1=xz and ⟹y=(xz)−1 .
The key idea is to write the y in terms of x,z .
Now,
1/(1+x+y-¹)+1/(1+y+z−¹)+1/(1+z+x−¹)
=1/(1+x+xz)+1/(1+(xz)−¹+z−¹)+1/(1+z+x−¹)
=1/(1+x+xz)+xz/(xz+1+x)+x/(x+xz+1)
=1/(1+x+xz)+xz/(1+x+xz)+x/(1+x+xz)
=1+x+xz/(1+x+xz)
=1
Similar questions
Math,
1 month ago
English,
1 month ago
Physics,
1 month ago
English,
2 months ago
English,
2 months ago
Computer Science,
9 months ago
Social Sciences,
9 months ago