Math, asked by Mukesh2223, 2 months ago

If xyz=1, prove that
 \frac{1}{1 + x + {y}^{ - 1}} +  \frac{1}{1 + y +  {z}^{ - 1} }  +  \frac{1}{1 + z +  {x}^{ - 1} }  = 1

Answers

Answered by samriddhasil297
2

Answer is 1

Step-by-step explanation:

Given that xyz=1

⟹y−1=xz and ⟹y=(xz)−1 .

The key idea is to write the y in terms of x,z .

Now,

1/(1+x+y-¹)+1/(1+y+z−¹)+1/(1+z+x−¹)

=1/(1+x+xz)+1/(1+(xz)−¹+z−¹)+1/(1+z+x−¹)

=1/(1+x+xz)+xz/(xz+1+x)+x/(x+xz+1)

=1/(1+x+xz)+xz/(1+x+xz)+x/(1+x+xz)

=1+x+xz/(1+x+xz)

=1

Similar questions