If xyz =1, then simplify:-
(1+x+y^-1)×(1+y+z^-1)^-1×(1+z+x^-1)^-1
Answers
Answered by
8
Step-by-step explanation:
Given:— xyz = 1
To prove:- (1+x+y^−1)^−1+(1+y+z^−1)^−1+(1+z+x^−1)^−1 = 1
Proof:-
Taking L.H.S.-
(1+x+y^−1)^−1+(1+y+z^−1)^−1+(1+z+x^−1)^−1
= (1+x+xz)^−1+(1+y+xy)^−1+(1+z+yz)^−1
= (1+x+xz)^−1+(xyz+y+xy)^−1+(1+z+yz)^−1
= (1+x+xz)^ −1+y^−1(1+x+xz)^−1+(1+z+yz)^−1
= (1+x+xz)^−1(1+y^−1)+(1+z+yz)^−1
= (xyz+x+xz)^−1(1+y^−1)+(1+z+yz)^−1
= x^−1(1+z+yz)^−1(1+y^−1)+(1+z+yz)^−1
= (1+z+yz)^−1(x^−1+(xy)^−1)+(1+z+yz)^−1
= (1+z+yz)^−1(yz+z+1)
= 1+z+yz/1+z+yz
= 1
= R.H.S.
:)
Similar questions
English,
1 month ago
English,
3 months ago
Math,
10 months ago
Computer Science,
10 months ago
Math,
10 months ago