Physics, asked by vishneerajkumar95, 9 months ago

If y=0.4 sin (90t + 0.40) find the amplitude and angular frequency.

Answers

Answered by BrainlyRonaldo
7

\bigstar Answer \bigstar

\checkmark Given:

\blue{\implies \sf y =0.4 \;sin(90\; t+0.40)}

\checkmark To Find:

\red{\sf \implies Amplitude \;(\;A\;)}

\red{\sf \implies Angular \ Frequency \; (\; \omega\;)}

\checkmark Solution:

We know that,

Generally,

\green{\boxed{\boxed{\sf y =A \;sin(\omega \; t+\phi)}}}

Where,

\pink{\implies \sf A=Amplitude}

\purple{\sf \implies \omega = Angular \ Frequency}

\orange{\sf \implies \phi=Initial \ Phase}

Given that

\blue{\implies \sf y =0.4 \;sin(90\; t+0.40)}

Therefore,

On Comparing the Given Equation to the General Equation

We get,

\red{\sf \implies \underline{Amplitude} \;(\;A\;)}

\pink{\implies \sf A=0.4 \ m}

\red{\sf \implies \underline{Angular \ Frequency} \; (\; \omega\;)}

\purple{\sf \implies \omega = 90 \ rad/s}

Hence,

\orange{\sf \implies Amplitude \;(\;A\;)=0.4 \ m}

\pink{\sf \implies Angular \ Frequency \; (\; \omega\;)=90 \ rad/s}

Answered by BrainlyIAS
1

Answer :

y = A sin ( cos ωt + Ф )

where ,

A = Amplitude

ω = Angular Frequency

t = time

Ф = Initial Phase

Now  compare y=0.4 sin (90t + 0.40) with y = A sin ( cos ωt + Ф ) , we get ,

  • Amplitude , A = 0.4 m
  • ω = 90 rad/s

Similar questions