Math, asked by anshsingh23may2006, 8 months ago

if y=1-√2,then find the value of (y-1/y)³

Answers

Answered by amankumaraman11
0

Given,

 \large \rm{}y = \orange{ 1 -  \sqrt{2} }

To find :: (y - 1/y)³

Here,

 \rm \frac{1}{y}  =  \frac{1}{1 -  \sqrt{2} }  \\   \small\boxed{ \rm rationalizing \:  \: the \:  \: obtained \:  \: value} \\  \to \frac{1}{1 -  \sqrt{2} }  \times  \frac{1 +  \sqrt{2} }{1 +  \sqrt{2} }  \\ \\   \to \frac{1 +  \sqrt{2} }{(1 -  \sqrt{2} )(1 +  \sqrt{2} )}  \\   \small\boxed{ \rm using \:  \:  \:  \rightarrow \:  {\large{ \boxed{ \tt(a + b)(a - b) =  {a}^{2} -  {b}^{2}   }}} \:  \:  \leftarrow \:  \: identity} \\  \to \frac{1 +  \sqrt{2} }{ {(1)}^{2} -  {( \sqrt{2} )}^{2}  }  =  \frac{1 +  \sqrt{2} }{1 - 2}  \\  \\  \to \frac{1 +  \sqrt{2} }{ - 1}   \:  \: = \purple{ \{  - (1 +  \sqrt{2} ) \}}

Now,

 \huge \implies \rm{}y -  \frac{1}{y}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \small \boxed{ \tt \: putting \:  \: the \:  \: values} \\  \large \implies \rm{}1  -  \sqrt{2}  -  \{ - (1  +  \sqrt{2} ) \} \\   \large \implies \rm{}1  -  \sqrt{2}  -  \{ - 1 -  \sqrt{2}  \} \\   \large \implies \rm{}1  -    \cancel{\sqrt{2} } + 1   +  \cancel { \sqrt{2} } \\   \large \implies \rm2

  • Therefore,

 \implies \large \tt \bigg  \{y -  \frac{1}{y}   \bigg\}^{3}  \\  \\  \implies  \tt { \big(2 \big)}^{3}  \: =  \red8 \\

Hence,

 \large\boxed{  \boxed{ \sf{ \bigg(y -  \frac{1}{y}  \bigg)^{3}  =  \:  \red8} \:  \: }} \\

Similar questions