Math, asked by Harshiie8055, 8 days ago

If y 1/2x+3then dn y dx n..

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{y=\dfrac{1}{2x+3}}

Differentiating w.r.t. x, successively,

\tt{y_{1}=(2)\dfrac{(-1)}{(2x+3)^2}}

\tt{\implies\,y_{2}=(2)^2\dfrac{(-1)(-2)}{(2x+3)^3}}

\tt{\implies\,y_{3}=(2)^3\dfrac{(-1)(-2)(-3)}{(2x+3)^4}}

\tt{\implies\,y_{4}=(2)^4\dfrac{(-1)(-2)(-3)(-4)}{(2x+3)^5}}

\tt{\implies\,y_{n}=(2)^n\dfrac{(-1)^n\,n!}{(2x+3)^{n+1}}}

\tt{\implies\,y_{n}=\dfrac{(-1)^n\cdot\,(2)^n\cdot\,n!}{(2x+3)^{n+1}}}

Similar questions