Math, asked by chaya4637, 2 months ago

if y=1/5 log (5+tan x/2/5-tan x/2),prove that dy/dx= 1/12+13+cosx​

Answers

Answered by mathdude500
9

Identities Used :-

\boxed{ \sf{ \:\dfrac{d}{dx}logx = \dfrac{1}{x} }}

\boxed{ \sf{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \sf{ \:\dfrac{d}{dx}k = 0 }}

\boxed{ \sf{ \: \dfrac{d}{dx}x = 1}}

\boxed{ \sf{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2} }}

\boxed{ \sf{ \: tanx = \dfrac{sinx}{cosx} }}

\boxed{ \sf{ \:1 + cos2x =  {2cos}^{2}x}}

\boxed{ \sf{ \:1  -  cos2x =  {2sin}^{2}x}}

Lets Solve the problem now!!!

★ Given

\rm :\longmapsto\:y = \dfrac{1}{5} log\bigg(\dfrac{5 + tan\dfrac{x}{2} }{5 - tan\dfrac{x}{2}} \bigg)

★ We know,

 \boxed{ \sf \: log \frac{x}{y} = logx \: -   \: logy}

So,

★ Given expression can be rewritten as

\rm :\longmapsto\:y = \dfrac{1}{5} log\bigg(5 + tan\dfrac{x}{2}\bigg)  - \dfrac{1}{5}log\bigg(5 - tan\dfrac{x}{2} \bigg)

★ On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{1}{5} \dfrac{d}{dx}log\bigg(5 + tan\dfrac{x}{2}\bigg)-\dfrac{1}{5} \dfrac{d}{dx}log\bigg(5 - tan\dfrac{x}{2} \bigg)

\rm \:=\dfrac{1}{5} \bigg(\dfrac{1}{5 + tan\dfrac{x}{2}}\dfrac{d}{dx}(5 + tan\dfrac{x}{2}) - \dfrac{1}{5-tan\dfrac{x}{2}}\dfrac{d}{dx}(5  -  tan\dfrac{x}{2}) \bigg)

\rm \:=\dfrac{1}{5} \bigg(\dfrac{1}{5 + tan\dfrac{x}{2}} \:  {sec}^{2} \dfrac{x}{2} \times  \dfrac{1}{2} +  \dfrac{1}{5-tan\dfrac{x}{2}} {sec}^{2} \dfrac{x}{2} \times\dfrac{1}{2} \bigg)

\rm \:= \dfrac{1}{10} {sec}^{2}\dfrac{x}{2} \bigg(\dfrac{1}{5 + tan\dfrac{x}{2}} \:   +  \dfrac{1}{5-tan\dfrac{x}{2}} \bigg)

\rm \:= \dfrac{1}{10} {sec}^{2}\dfrac{x}{2} \bigg(\dfrac{5 - tan\dfrac{x}{2} + 5 + tan\dfrac{x}{2}}{(5 + tan\dfrac{x}{2})(5 - tan\dfrac{x}{2})} \:    \bigg)

\rm \:= \dfrac{1}{10} {sec}^{2}\dfrac{x}{2} \bigg(\dfrac{10}{25 -  {tan}^{2} \dfrac{x}{2}} \:    \bigg)

\rm \:=  {sec}^{2}\dfrac{x}{2} \bigg(\dfrac{1}{25 -  {tan}^{2} \dfrac{x}{2}} \:    \bigg)

\rm \:=  {sec}^{2}\dfrac{x}{2} \bigg(\dfrac{ {cos}^{2}\dfrac{x}{2} }{25 {cos}^{2}\dfrac{x}{2}  -  {sin}^{2} \dfrac{x}{2}} \:    \bigg)

\rm \:= \bigg(\dfrac{ 1 }{25 {cos}^{2}\dfrac{x}{2}  -  {sin}^{2} \dfrac{x}{2}} \:    \bigg)

\rm \:= \bigg(\dfrac{ 1 }{25  \bigg(\dfrac{1 + cosx}{2} \bigg)  -   \dfrac{1 - cosx}{2}} \:    \bigg)

\rm \:= \bigg(\dfrac{2 }{25   + 25cosx - 1 + cosx} \:    \bigg)

\rm \:= \bigg(\dfrac{2 }{24   + 26cosx} \:    \bigg)

\rm \:= \bigg(\dfrac{2 }{2(12   + 13cosx)} \:    \bigg)

\rm \:= \bigg(\dfrac{1 }{12   + 13cosx} \:\bigg)

Hence,

\bf :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{12 + 13 \: cosx}

Similar questions