Math, asked by mcdyno16, 6 hours ago

If y=(1+x¼)(1+x½)(1-x¼), then dy/dx=...?​

Answers

Answered by senboni123456
4

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\,y=\left(1+x^{\frac{1}{4}}\right)\cdot\left(1+x^{\frac{1}{2}}\right)\cdot\left(1-x^{\frac{1}{4}}\right)}

\tt{\displaystyle\,\implies\,y=\left(1+x^{\frac{1}{4}}\right)\cdot\left(1-x^{\frac{1}{4}}\right)\cdot\left(1+x^{\frac{1}{2}}\right)}

\tt{\displaystyle\,\implies\,y=\left\{(1)^2-\left(x^{\frac{1}{4}}\right)^2\right\}\cdot\left(1+x^{\frac{1}{2}}\right)}

\tt{\displaystyle\,\implies\,y=\left(1-x^{\frac{1}{2}}\right)\cdot\left(1+x^{\frac{1}{2}}\right)}

\tt{\displaystyle\,\implies\,y=\left\{(1)^2-\left(x^{\frac{1}{2}}\right)^2\right\}}

\tt{\displaystyle\,\implies\,y=1-x}

\tt{\displaystyle\,\implies\,\dfrac{dy}{dx}=-1}

Answered by amankumaraman11
2

y = (1 +  \sqrt[4]{x} )(1 +  \sqrt{x} )(1 -  \sqrt[4]{x} )

Further simplification of y, we get,

y =  \{  {(1)}^{2} -  {( \sqrt[4]{x} )}^{2}  \}  \{1 +  \sqrt{x}  \} \\ y = (1  -  \sqrt{x}  )(1 +  \sqrt{x} ) \\ y =  \{  {(1)}^{2}  -  {( \sqrt{x} )}^{2} \} \\  y= 1 - x

Now,

y = 1 - x

dy/dx = d(1 - x)/dx

= (0 - 1) = - 1

Hence,

dy/dx = -1

Similar questions