Math, asked by theroz74, 5 months ago

If y = 1/x+x

, then find dy/dx at x= 1​

Answers

Answered by Anonymous
0

Step-by-step explanation:

y =  \frac{1}{x}  + x \\  \\  =  >  \frac{dy}{dx}  =  - x {}^{ - 2} + 1 \\  \\  =  >  \frac{dy}{dx} (x = 1) =  -  \frac{1}{ {1}^{2} }  + 1 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = - 1+ 1 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 0 \\  \\ using \: formula \:  \:  \:  -  \:  \:  \:  \:  \:  \:  \:  \frac{d}{dx} ( \frac{1}{ {x}^{2} } ) =  \frac{d}{dx} ( {x}^{ - 2} ) =  - 2.x ^{ - 2 - 1}  =  - 2x {}^{ - 3}  \\  \\  \frac{d}{dx} ( {x}^{n} ) = n. {x}^{n - 1}

Similar questions