If y=
1
y=sin x
cos y cos 2r
=
1
1
+===+
cos 2x cos 3x
cos 9x cos 10x
then
dy
A. 10 sec 10x
B. secʻx
sec
C. sec?x-10 sec 10x
D. 10 sec 10x-secx
Answers
Answered by
2
Answer:
y=sin2x−x+2sinx−log∣secx+tanx∣+C.
We have,
dx
dy
=
cosx
cos3x+cos2x
⇒
dx
dy
=
cosx
4cos
3
x−3cosx+2cos
2
x−1
⇒
dx
dy
=4cos
2
x−3+2cosx−secx
⇒
dx
dy
=2×2cos
2
x−2+2−3+2cosx−secx
⇒
dx
dy
=2cos2x+2−3+2cosx−secx
Integrating we get,
⇒y=sin2x−x+2sinx−log(secx+tanx)+C.
Answered by
0
Answer:
may this help you
Step-by-step explanation:
y=sin2x−x+2sinx−log∣secx+tanx∣+C.
We have,
dx
dy
=
cosx
cos3x+cos2x
⇒
dx
dy
=
cosx
4cos
3
x−3cosx+2cos
2
x−1
⇒
dx
dy
=4cos
2
x−3+2cosx−secx
⇒
dx
dy
=2×2cos
2
x−2+2−3+2cosx−secx
⇒
dx
dy
=2cos2x+2−3+2cosx−secx
Integrating we get,
⇒y=sin2x−x+2sinx−log(secx+tanx)+C.
Similar questions