Math, asked by saishamahajan04, 10 months ago

if y=2+√3 find the value
of a)
y + 1/2 b) y²+ 1 / y ^2​

Answers

Answered by NayanSatapathy
12

a) 2 + √3 + 1/2 as usual

= 5/2 + √3

b)) given pic above

Attachments:
Answered by qwwestham
11

Given:

y = 2 +  \sqrt{3}

To Find:

(a)

y +  \frac{1}{2}

(b)

 {y}^{2}  +  \frac{1}{ {y}^{2} }

Solution:

For (a)

y = 2 +  \sqrt{3}

 =  y+  \frac{1}{2}

adding the value of y in the equation formed,

 =  (2 +  \sqrt3) +  \frac{1}{2}

 = 2  +  \frac{1}{2} +  \sqrt{3}

 =  \frac{4 + 1}{2}  +  \sqrt{3}

 =  \frac{5}{2}  +  \sqrt{3}

The value of y +  \frac{1}{2}  =  \frac{5}{2}  +  \sqrt{3}

For (b)

 {y}^{2}  +  \frac{1}{ {y}^{2} }

where

y = 2 +  \sqrt{3}

adding the value of y

 = {(2 +  \sqrt{3}) }^{2}  +  \frac{1}{{(2 +  \sqrt{3}) }^{2}}

changing the denominator to the numerator with a change in the sign.

 = {(2 +  \sqrt{3}) }^{2} + {(2  -  \sqrt{3}) }^{2}

using the formula of (a+b)² = a² + b² + 2ab and (a-b)² = a² + b² - 2ab

 =  {2}^{2}  +  { (\sqrt{3}) }^{2}  + 2(2 \sqrt{3) }  +(  {2}^{2}  +  { (\sqrt{3} )}^{2}  - 2(2 \sqrt{3)} )

 = 4 + 3 + 4 \sqrt{3}  + 4 + 3  - 4 \sqrt{3}

 = 7 + 7

 = 14

Therefore, the value of  {y}^{2}  +  \frac{1}{ {y}^{2} }  = 14

Similar questions