Math, asked by lamiatasnim040, 19 days ago

If y^2 -5y-1 = 0, then prove that, y^8-727y^4+1=0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {y}^{2} - 5y - 1 = 0 \\

can be rewritten as

\rm \:  {y}^{2} - 1 = 5y \\

\rm \: \dfrac{ {y}^{2}  - 1}{y} = 5  \\

\rm \: y - \dfrac{1}{y} = 5 \\

On squaring both sides, we get

\rm \:  {\bigg(y - \dfrac{1}{y}  \bigg) }^{2} =  {5}^{2}

We know,

\boxed{\sf{  \: {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \: }} \\

So, using this identity, we get

\rm \:  {y}^{2} + \dfrac{1}{ {y}^{2} }  - 2 \times y \times \dfrac{1}{y}  = 25 \\

\rm \:  {y}^{2} + \dfrac{1}{ {y}^{2} }  - 2   = 25 \\

\rm \:  {y}^{2} + \dfrac{1}{ {y}^{2} } = 25 + 2 \\

\rm \:  {y}^{2} + \dfrac{1}{ {y}^{2} } = 27 \\

On squaring both sides, we get

\rm \: \bigg( {y}^{2} + \dfrac{1}{ {y}^{2} }\bigg)^{2}  = (27)^{2}  \\

\rm \:  {y}^{4} + \dfrac{1}{ {y}^{4} } + 2 \times  {y}^{2}  \times \dfrac{1}{ {y}^{2} }  = 729 \\

\rm \:  {y}^{4} + \dfrac{1}{ {y}^{4} } + 2   = 729 \\

\rm \:  {y}^{4} + \dfrac{1}{ {y}^{4} }   = 729 - 2\\

\rm \:  {y}^{4} + \dfrac{1}{ {y}^{4} }   = 727\\

\rm \:\dfrac{ {y}^{8}  + 1}{ {y}^{4} }   = 727\\

\rm \:  {y}^{8} + 1 = 727 {y}^{4} \\

\rm\implies \: \:  \: \boxed{\sf{  \:\rm \:   {y}^{8} - 727 {y}^{4} + 1 = 0 \:  \: }} \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions