Math, asked by bharadwaj13, 5 months ago

If y = 2^logx/2, then dy/dx is :​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y = \frac{  {2}^{ log(x) } }{2}

 =  > 2y =  {2}^{ log_{e}(x) }

 =  > 2y =  {x}^{ log_{e}(2) }  \:  \:  \:  \:  \: (from \:  \: base\:  \:change \:  \:  theorem)

 =  > 2y =  {x}^{ ln(2) }

 =  > 2 \frac{dy}{dx}  =  ln(2) ( {x})^{ ln(2)  - 1}

 =  >  \frac{dy}{dx}  =  \frac{1}{2}. ln(2)  ( {x})^{ ln(2)  -  ln(e) }

 =  >  \frac{dy }{dx}  =  \frac{1}{2} . ln(2)( {x})^{ ln( \frac{2}{e} ) }

Similar questions