if y = 2/sin theta + root 3 cos theta then the minimum value of y is
Answers
Answered by
17
Heya Mate!!!
Y =2/(sinθ + √3cosθ)
So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)
-2 ≤ (sinθ + √3cosθ) ≤ 2
So, minimum value of (sinθ + √3cosθ) = -2
Maximum value of (sinθ + √3cosθ) = 2
For getting minimum value of y , we have to use maximum value of (sinθ + √3cosθ) .
So, minimum value of y = 2/-2 = 1
Y =2/(sinθ + √3cosθ)
So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)
-2 ≤ (sinθ + √3cosθ) ≤ 2
So, minimum value of (sinθ + √3cosθ) = -2
Maximum value of (sinθ + √3cosθ) = 2
For getting minimum value of y , we have to use maximum value of (sinθ + √3cosθ) .
So, minimum value of y = 2/-2 = 1
Answered by
11
Y =
K = minimum if Sinx + √3cosx is maximum
K will be maximum when Cosx = √3/2 that is Cos30°
K = sin30° + √3cos30°
K = 1/2 + √3/2
K = 4/2
k = 2
Then Y = 2/2
Y = 1
Minimum value will be 1
K = minimum if Sinx + √3cosx is maximum
K will be maximum when Cosx = √3/2 that is Cos30°
K = sin30° + √3cos30°
K = 1/2 + √3/2
K = 4/2
k = 2
Then Y = 2/2
Y = 1
Minimum value will be 1
sadiya721:
thanx bro
Similar questions