If y=2sinalpha/1+cosalpha+sinalpha then prove y=1-cosalpha+sinalpha/1+sinalpha
Answers
Answered by
2
2sinA/1+cosA+sinA=1-cosA+sinA/1+sinA
2sinA/(1+sinA)+cosA=1-cosA+sinA/1+sinA
2sinA(1+sinA-cosA)/(1+sinA)^2-cosA^2=1-cosA+sinA/1+sinA
2sinA(1-cosA+sinA)/1+sinA^2+2sinA-1+sinA^2=1-cosA+sinA/1+sinA
2sinA(1-cosA+sinA)/2sinA^2+2sinA=1-cosA+sinA/1+sinA
2sinA(1-cosA+sinA)/2sinA(1+sinA)=1-cosA+sinA/1+sinA
1-cosA+sinA/1+sinA=1-cosA+sinA/1+sinA
2sinA/(1+sinA)+cosA=1-cosA+sinA/1+sinA
2sinA(1+sinA-cosA)/(1+sinA)^2-cosA^2=1-cosA+sinA/1+sinA
2sinA(1-cosA+sinA)/1+sinA^2+2sinA-1+sinA^2=1-cosA+sinA/1+sinA
2sinA(1-cosA+sinA)/2sinA^2+2sinA=1-cosA+sinA/1+sinA
2sinA(1-cosA+sinA)/2sinA(1+sinA)=1-cosA+sinA/1+sinA
1-cosA+sinA/1+sinA=1-cosA+sinA/1+sinA
Similar questions