Math, asked by protikb2003, 9 months ago

If y=2sinx+3cosx show that d²y/dx²+y=0.

Answers

Answered by BendingReality
22

Answer:

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}+y =0 \quad [ \ Shown \ ] \\

Step-by-step explanation:

Given :

\displaystyle \sf y=2\sin x+3 \cos x \\ \\

We have to show :

\displaystyle \sf \frac{d^2y}{dx^2}+y=0 \\ \\

We know :

\displaystyle \sf \frac{d}{dx}\left(\sin x \right)=\cos x \\ \\

\displaystyle \sf \frac{d}{dx}\left(\cos x \right)=-\sin x \\ \\

Now :

\displaystyle \sf y=2\sin x+3 \cos x \quad ...(i) \\ \\

Diff. w.r.t. x :

\displaystyle \sf \frac{dy}{dx} =(2\sin x+3 \cos x)' \\ \\

\displaystyle \sf \frac{dy}{dx} =2\cos x-3 \sin x \\ \\

Finding second order derivative :

Diff. w.r.t x :

\displaystyle \sf \frac{d^2y}{dx^2} =(2\cos x-3 \sin x)' \\ \\

\displaystyle \sf \frac{d^2y}{dx^2} =-2\sin x-3 \cos x \quad ...(ii) \\ \\

Now adding ( i )  and  ( ii ) we get :

\displaystyle \sf \frac{d^2y}{dx^2}+y =-2\sin x-3 \cos x+2\sin x+3 \cos x \\ \\

\displaystyle \sf \longrightarrow \frac{d^2y}{dx^2}+y =0 \\ \\

Hence shown!

Similar questions