if y=2tanx-7secx then find dy/dx
Answers
Answer:
PLEASE BRAINLIEST MY ANSWER
dy/dx = 2.sec²x - 7.tanx.secx
Step-by-step explanation:
y=2.tanx-7.secx
Differentiate the following equation -
∴ dy/dx = dy/dx [2.tanx-7.secx]
dy/dx = dy/dx (2.tanx) - dy/dx (7.secx)
= 2.dy/dx (tanx) - 7.dy/dx (secx)
= 2. - 7. --------------------------------------- 1)
Solve and
= dy/dx (tanx) = dy/dx (sinx/cosx)
= [(cosx.cosx)-(sinx).(-sinx)]/cos²x -------------(using quotient rule)
= [cos²x+sin²x]/cos²x
= 1/cos²x -------------(using the cos²x+sin²x=1)
= sec²x
= dy/dx (secx)
= dy/dx (1/cosx)
= [(cosx*0)-1.(-sinx)]/cos²x ------------------ (using product rule)
= (sinx)/cos²x
= sinx/cosx.1/cosx
= tanx.secx
put the value of and
Equation 1) becomes
dy/dx = 2. - 7.
= 2.sec²x - 7.tanx.secx