Math, asked by poorvipoorvika15, 7 months ago

if y=2tanx-7secx then find dy/dx​

Answers

Answered by chetanakhairnar2000
2

Answer:

PLEASE BRAINLIEST MY ANSWER

dy/dx = 2.sec²x - 7.tanx.secx

Step-by-step explanation:

y=2.tanx-7.secx

Differentiate the following equation -

∴ dy/dx = dy/dx [2.tanx-7.secx]

dy/dx = dy/dx (2.tanx) - dy/dx (7.secx)

         = 2.dy/dx (tanx) - 7.dy/dx (secx)

         = 2.I_{1}   -   7.I_{2}           --------------------------------------- 1)

Solve I_{1} and  I_{2}

I_{1} = dy/dx (tanx) = dy/dx (sinx/cosx)

   = [(cosx.cosx)-(sinx).(-sinx)]/cos²x    -------------(using quotient rule)

   = [cos²x+sin²x]/cos²x

   = 1/cos²x                                   -------------(using the cos²x+sin²x=1)

   = sec²x

I_{2} = dy/dx (secx)        

   = dy/dx (1/cosx)      

   = [(cosx*0)-1.(-sinx)]/cos²x       ------------------ (using product rule)

   = (sinx)/cos²x

   = sinx/cosx.1/cosx

   = tanx.secx

put the value of I_{1} and  I_{2}

Equation 1) becomes

dy/dx = 2.I_{1} - 7.I_{2}

          = 2.sec²x - 7.tanx.secx

Similar questions