Math, asked by harshit0786singh, 5 hours ago

If y=2x be the equation to the chord of a circle
circle X2 + y2 = 10x .Find
the equation to the circle of which this chord is a diameter.

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest pls

Step-by-step explanation:

so \: here \: for \: a \: certain \: circle \:  \\ y = 2x \: is \: equation \: of \: chord \: to \: a \: circle \: x {}^{2}  + y {}^{2}  = 10 x\\ so \: substituting \: value \: of \: y \: in \: x {}^{2}  + y {}^{2}  = 10 x\\ we \: get \\ x {}^{2}  + (2x) {}^{2}  = 10x \\ x {}^{2}  + 4x {}^{2}  = 10x \\ 5x {}^{2}  = 10x \\ 5x {}^{2}  - 10x = 0 \\ 5x(x - 2) = 0 \\ ie \:  \:  \: 5x = 0 \:  \: or \:  \: x - 2 = 0 \\ so \: hence \\ x = 0 \:  \: or \:  \: x = 2 \\  \\ substitute \: values \: of \: x \: in \: y = 2x \\ we \: get \\ y = 0 \:  \: or \:  \: y = 4

so \: these \: two \: values \: of \: x \: and \: y \: are \: nothing \: but  \: their\: 2 \: coordinates \: ie \:  \\ (x1 \: and \: x2) \: and \:( y1 \: ad \: y2)  \\ so \: let \: then \\ (x1,y1) = (0,0) \\ (x2,y2) = (2,4) \\  \\ now \: we \: know \: that \\ diameter \: equation \: form \: of \: circle \: is \: given \: by \\ (x - x1)(x - x2) + (y -y1)(y - y2) = 0 \\ (x - 0)(x - 2) + (y - 0)(y - 4) = 0 \\ x(x - 2) + y(y - 4) = 0 \\ x {}^{2}  - 2x + y {}^{2}  - 4y = 0 \\ ie \:  \:  x {}^{2}  + y {}^{2}  - 2x - 4y = 0 \\  \\ hence \: equation \: circle \: is \: x {}^{2}  + y {}^{2}  - 2x - 4y = 0

Similar questions