Math, asked by Anonymous, 1 day ago

If y = 2x³ - 3x² - 36x + 2 . Find dy/dx !

No Irrelevant Stuff Plz :) ​

Answers

Answered by Anonymous
25

SOLUTION

Differentiate separately both sides of the equation (treat y as a function of x):

 \bold \red{\frac{d}{dx} \left(y{\left(x \right)}\right)}

 \bold \red{= \frac{d}{dx} \left(2 x^{3} - 3 x^{2} - 36 x + 2\right)}

Differentiate the RHS of the equation.

The derivative of a sum/difference is the sum/difference of derivatives:

 \small \bold{\color{red}{\left(\frac{d}{dx} \left(2 x^{3} - 3 x^{2} - 36 x + 2\right)\right)} = \color{red}{\left(\frac{d}{dx} \left(2 x^{3}\right) - \frac{d}{dx} \left(3 x^{2}\right) - \frac{d}{dx} \left(36 x\right) + \frac{d}{dx} \left(2\right)\right)}}

The derivative of a constant is 0:

 \small \bold{\color{red}{\left(\frac{d}{dx} \left(2\right)\right)} - \frac{d}{dx} \left(36 x\right) - \frac{d}{dx} \left(3 x^{2}\right) + \frac{d}{dx} \left(2 x^{3}\right) = \color{red}{\left(0\right)} - \frac{d}{dx} \left(36 x\right) - \frac{d}{dx} \left(3 x^{2}\right) + \frac{d}{dx} \left(2 x^{3}\right)}

Apply the constant multiple rule

  \small\bold \red{{\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right) \:  with  \: c = 2 \:  and  \: f{\left(x \right)} = x^{3}}}

\color{red}{\left(\frac{d}{dx} \left(2 x^{3}\right)\right)} - \frac{d}{dx} \left(36 x\right) - \frac{d}{dx} \left(3 x^{2}\right) = \color{red}{\left(2 \frac{d}{dx} \left(x^{3}\right)\right)} - \frac{d}{dx} \left(36 x\right) - \frac{d}{dx} \left(3 x^{2}\right) \\Apply  \: the \:  constant \:  multiple  \: rule  \\ \: \frac{d}{dx} \left(c f{\left(x\right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right) \:  with  \: c = 3 \: and  \: f{\left(x \right)} = x^{2}

 \bold{- \color{red}{\left(\frac{d}{dx} \left(3 x^{2}\right)\right)} - \frac{d}{dx} \left(36 x\right) + 2 \frac{d}{dx} \left(x^{3}\right) = - \color{red}{\left(3 \frac{d}{dx} \left(x^{2}\right)\right)} - \frac{d}{dx} \left(36 x\right) + 2 \frac{d}{dx} \left(x^{3}\right)}

Apply the power rule $$$

 \bold{\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1} \: with \: n = 2}

 \bold{- 3 \color{red}{\left(\frac{d}{dx} \left(x^{2}\right)\right)} - \frac{d}{dx} \left(36 x\right) + 2 \frac{d}{dx} \left(x^{3}\right) = - 3 \color{red}{\left(2 x\right)} - \frac{d}{dx} \left(36 x\right) + 2 \frac{d}{dx} \left(x^{3}\right)}

Apply the power rule

 \bold{\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1} \: with  \: n = 3:}

 \bold{- 6 x + 2 \color{red}{\left(\frac{d}{dx} \left(x^{3}\right)\right)} - \frac{d}{dx} \left(36 x\right) = - 6 x + 2 \color{red}{\left(3 x^{2}\right)} - \frac{d}{dx} \left(36 x\right)}

Apply the constant multiple rule

 \bold{\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)  \: with  \: c = 36  \: and  \: f{\left(x \right)} = x:}

 \bold{6 x^{2} - 6 x - \color{red}{\left(\frac{d}{dx} \left(36 x\right)\right)} = 6 x^{2} - 6 x - \color{red}{\left(36 \frac{d}{dx} \left(x\right)\right)}}

Apply the power rule

  \bold{\bold \red{\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1} \: with \:  n = 1, in  \: other \:  words, \frac{d}{dx} \left(x\right) = 1}}

 \small \bold{6 x^{2} - 6 x - 36 \color{red}{\left(\frac{d}{dx} \left(x\right)\right)} = 6 x^{2} - 6 x - 36 \color{red}{\left(1\right)}}

Simplify:

 \bold{6 x^{2} - 6 x - 36 = 6 \left(x - 3\right) \left(x + 2\right)}

 { \small \bold \red{Thus, \frac{d}{dx} \left(2 x^{3} - 3 x^{2} - 36 x + 2\right) = 6 \left(x - 3\right) \left(x + 2\right).}}

 \small{ \bold \red{Therefore, \frac{dy}{dx} = 6 \left(x - 3\right) \left(x + 2\right)}}

ANSWER

\frac{dy}{dx} = 6 \left(x - 3\right) \left(x + 2\right)

Answered by TrustedAnswerer19
129

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given : \\  \\  \rm \: y = 2 {x}^{3}   - 3 {x}^{2}  - 36x + 2 \\  \\  \sf \: we \: have \: to \: differentiate \: it \: w.r.t. \:  \:  \bf \: x \\  \\  \therefore \:  \rm \:  \frac{dy}{dx} =  \frac{d}{dx} (2 {x}^{3}   - 3 {x}^{2}  - 36x + 2) \\  \\  \pink{{\boxed{\begin{array}{cc}\bf \:we \: know \: that :  \\  \bf \:  \frac{d}{dx}(u \pm \: v) =  \frac{d}{dx}  \: u   \pm \frac{d}{dx} \:  v\end{array}}}} \\  \orange{ \sf \: apply \: this} \\  \\  \rm =  \frac{d}{dx}2 {x}^{3}  -  \frac{d}{dx}  3 {x}^{2} -  \frac{d}{dx}  36x +  \frac{d}{dx} \: 2  \\  \\  \pink{{\boxed{\begin{array}{cc}\bf \: we \: know \: that :  \\  \bf \:  \frac{d}{dx} \: [constant(c)] = 0 \\  \\  \bf \:  \frac{d}{dx}  \: c {x}^{n} = cn {x}^{n - 1}   \end{array}}}}  \\  \orange{ \sf \: apply \: this} \\  \\  \rm = 2 \times 3 \times  {x}^{3 - 1}  - 3 \times 2  \times {x}^{2 - 1}   - 36 \times  {x}^{1 - 1}  + 0 \\  \\  \rm = 6 {x}^{2}  - 6x - 36 \\  \\  \\  \\  \blue{ \boxed{\therefore \rm \:  \frac{dy}{dx}  = 6 {x}^{2} - 6x  - 36}}\end{array}}}}

Similar questions